тел.(812)955-36-84
      (911)210-88-50
      
Сегодня %d %M %y г.
%h:%m

Люминесцентная ультрафиолетовая лампа ток питания


Устройство и схема включения люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).

Устройство и описание ЛЛ

Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.

Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого - создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер - лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины. В исходном состоянии электроды разомкнуты.

Стартерная схема включения люминесцентных ламп работает следующим образом.

  1. На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
  2. При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
  3. Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
  4. Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.

Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.

Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.

Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.

Бездроссельное включение люминесцентных ламп: схемы

Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).

Как запускается ЛЛ с ЭПРА

Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.

Достоинства электронной схемы запуска:

  • возможность пуска с любой временной задержкой;
  • не нужны массивный электромагнитный дроссель и стартер;
  • отсутствие гудения и моргания ламп;
  • высокая светоотдача;
  • легкость и компактность устройства;
  • больший срок эксплуатации.

Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.

Система ЭПРА преобразует сетевое переменное напряжение 220 В в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампы может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.

Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.

Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR1 и транзисторах Т1 и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2, С3, L1, подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.

ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.

Преимущества современных ЭПРА следующие:

  • плавное включение;
  • экономичность работы;
  • сохранение электродов;
  • исключение мерцания;
  • работоспособность при низкой температуре;
  • компактность;
  • долговечность.

Недостатками являются более высокая стоимость и сложная схема зажигания.

Применение умножителей напряжения

Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.

После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1, С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3, С4 устанавливают слюдяные на 1000 В.

ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.

Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.

Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.

Как включить сгоревшую лампу?

Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.

Заключение

Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.

fb.ru

Принцип работы и схема подключения люминесцентной лампы

Начиная с того времени, как была изобретена лампа накаливания, люди ищут способы создания более экономичного, и в то же время без потерь светового потока, электроприбора. И вот одним из таких приборов стала люминесцентная лампа. В свое время такие светильники стали прорывом в электротехнике, таким же, как в наше – светодиодные. Людям казалось, что такая лампа вечная, но они ошибались.

Тем не менее срок службы их все же был значительно дольше простых «лампочек Ильича», что в совокупности с экономичностью помогало завоевывать все большее доверие потребителей. Трудно найти хотя бы одно офисное помещение, где не было бы светильников для ламп дневного света. Конечно, этот световой прибор подключается не так просто, как его предшественники, схема питания люминесцентных ламп гораздо сложнее, и она не столь экономична, как светодиодная, но все же по сей день она остается лидером на предприятиях и в офисных помещениях.

Нюансы подключения

Схемы включения ламп дневного света подразумевают наличие электромагнитного пускорегулирующего аппарата или дросселя (представляющего собой своеобразный стабилизатор) со стартером. Конечно, в наше время есть люминесцентные лампы без дросселя и стартера и даже приборы с улучшенной цветопередачей (ЛДЦ), но о них чуть позднее.

Итак, стартер выполняет следующую задачу: он обеспечивает в схеме короткое замыкание, разогревая и электроды, обеспечивая тем самым пробой, при помощи которого облегчается розжиг лампы. После того как электроды достаточно разогрелись, стартер обеспечивает разрыв цепи. А дроссель ограничивает ток во время замыкания, обеспечивает высоковольтный разряд для пробоя, зажигая и поддерживая стабильное горение лампы после запуска.

Принцип действия

Как уже говорилось, схема питания лампы дневного света принципиально отличается от подключения приборов накаливания. Дело в том, что электроэнергия здесь преобразовывается в световой поток посредством протекания тока сквозь скопление паров ртути, которые смешаны с инертными газами внутри колбы. Происходит пробой этого газа при помощи высокого напряжения, поступающего на электроды.

Как это происходит, можно понять на примере схемы.

Составляющие люминесцентного светильника

На ней можно увидеть:

  1. пускорегулирующий аппарат (стабилизатор);
  2. трубка лампы, включающая в себя электроды, газ и люминофор;
  3. слой люминофора;
  4. стартерные контакты;
  5. стартерные электроды;
  6. цилиндр корпуса стартера;
  7. пластинка из биметалла;
  8. наполнение колбы из инертного газа;
  9. нити накаливания;
  10. излучение ультрафиолета;
  11. пробой.

Слой люминофора наносится на внутреннюю стенку лампы для того, чтобы преобразовать ультрафиолет, который невидим человеку, в освещение, принимаемое обычным зрением. При изменении состава этого слоя можно изменить оттенок цвета осветительного прибора.

Общие сведения о люминесцентных лампах

Оттенок цвета люминесцентной лампы, как и светодиодной, зависит от цветовой температуры. При t = 4 200 К свет от прибора будет белым, и маркироваться она будет как ЛБ. Если же t = 6 500 К, то освещение приобретает чуть синеватый оттенок, становится более холодным. Тогда при маркировке указывается, что это лампа ЛД, т. е. «дневная». Интересен тот факт, что при исследованиях выявлено – лампы с более теплым оттенком имеют более высокий КПД, хотя на глаз кажется, что холодные цвета светят немного ярче.

И еще один момент, касающийся размеров. В народе люминесцентную лампу Т8 на 30 Вт называют «восьмидесяткой», подразумевая, что ее длина – 80 см, что не соответствует действительности. На самом деле длина составляет 890 мм, что на 9 см длиннее. Вообще же самые ходовые ЛЛ – это как раз Т8. Их мощность зависит от длины трубки:

  • Т8 на 36 Вт имеет длину в 120 см;
  • Т8 на 30 Вт – 89 см («восьмидесятка»);
  • Т8 на 18 Вт – 59 см («шестидесятка»);
  • Т8 на 15 Вт – 44 см («сороковка»).

Варианты подключений

Бездроссельное включение

Схема бездроссельного подключения ЛДС

Чтобы ненадолго продлить работу сгоревшего светового прибора, существует вариант, при котором возможно подключение лампы дневного света без дросселя и стартера (схема подключения на рисунке). Он предусматривает использование умножителей напряжения.

Подача напряжения происходит после короткого замыкания нитей накаливания. Выпрямленное напряжение становится больше вдвое, чего вполне хватает для запуска лампы. С1 и С2 (на схеме) необходимо подобрать для 600 В, а С3 и С4 – под напряжение в 1 000 В. По прошествии некоторого времени пары ртути оседают в области одного из электродов, в результате чего свет от лампы становится менее ярким. Лечится это путем изменения полярности, т. е. необходимо просто развернуть реанимированную перегоревшую ЛЛ.

Подключение люминесцентных ламп без стартера

Задача этого элемента, обеспечивающего питание люминесцентных ламп – увеличение времени разогрева. Но долговечность стартера небольшая, он часто сгорает, а потому имеет смысл рассмотреть возможность того, как включить люминесцентную лампу без него. Для этого нужна установка вторичных трансформаторных обмоток.

Существуют ЛДС, которые изначально предусмотрены для подключения без стартера. На таких лампах имеется маркировка RS. При установке такого прибора в светильник, оборудованный этим элементом, лампа быстро горит. Происходит это по причине необходимости большего времени на разогрев спиралей таких ЛЛ. Если запомнить эту информацию, то уже не возникнет вопроса, как зажечь люминесцентный светильник, если произошло перегорание дросселя или стартера (схема соединения ниже).

Схема бесстартерного подключения ЛДС

Электронный пускорегулирующий аппарат

Электронный балласт в схеме питания ЛЛ заменил устаревший электромагнитный, улучшив пуск и добавив комфорта человеку. Дело в том, что более старые пусковые устройства потребляли больше энергии, часто издавали гудение, отказывали и портили лампы. К тому же в работе присутствовало мерцание по причине низких частот напряжения. При помощи электронного пускорегулирующего аппарата от этих неприятностей удалось избавиться. Необходимо разобраться, как действует ЭПРА.

Сначала происходит выпрямление тока, проходящего через диодный мост и при помощи С2 (на схеме ниже) напряжение сглаживается. Обмотки трансформатора (W1, W2, W3), включенные противофазно, нагружают генератор с высокочастотным напряжением, установленный после конденсатора (С2). В параллель к ЛЛ включен конденсатор С4. При поступлении резонансного напряжения происходит пробой газовой среды. Нить накаливания в это время уже разогрета.

После того как розжиг выполнен, показания сопротивления лампы снижаются, вместе с ними падает и напряжение до уровня, достаточного для поддержки свечения. Вся работа ЭПРА по запуску занимает меньше секунды. По такой схеме работают лампы дневного света без стартера.

Конструктивные особенности, а вместе с ними и схема включения люминесцентных ламп постоянно обновляются, изменяясь в лучшую сторону в экономии электроэнергии, уменьшаясь в размерах и увеличиваясь в долговечности работы. Главное – правильная эксплуатация и умение разобраться в огромном ассортименте, предлагаемом производителем. И тогда ЛЛ еще долго не покинут рынок электротехники.

lampagid.ru

О системах питания ламп дневного света

22.12.2013 г.

Я уже не  раз говорил что множество вещей которые нас окружают могли бы быть реализованы гораздо раньше, но почему-то вошли в наш быт совсем недавно. Все мы сталкивались с  люминесцентными лампами – такими белыми трубками с двумя штырьками на торцах. Помните, как они раньше включались? Вы нажимаете клавишу, лампа начинает промаргивать и наконец, входит в свой обычный режим.  Это реально раздражало, поэтому дома подобные штуковины не ставили.  Ставили в общественных местах, на производстве, в офисах, в цехах заводов —   они действительно экономичные по сравнению с обычными лампами накаливания.  Вот только моргали они с частотой 100 раз в секунду и многие это моргание замечали, что раздражало еще больше. Ну и еще для запуска к каждой лампе полагался пускорегулирующий дроссель, такая себе, железячка с массой под килограмм. Если он был собран недостаточно качественно, то довольно мерзко жужжал, тоже с частотой 100 герц. А если в помещении где вы работаете таких ламп десятки? Или сотни?  И все эти десятки синфазно включаются-выключаются 100 раз в секунду и дросселя жужжат, пусть и не все. Неужели это никак не воздействовало?

Но, в наше время можно сказать, что эпоха жужжащих дросселей и моргающих (как при старте, так и при работе) ламп закончилась. Сейчас они включаются сразу и для человеческого глаза их работа выглядит совершенно статичной. Причина – вместо тяжелых дросселей  и периодически залипающих стартеров в оборот вошли ЭПРА – электронные пускорегулирующие аппараты. Маленькие и легкие. Однако при одном лишь взгляда на их электрическую схему, возникает вопрос: а что мешало наладить их массовый выпуск еще в конце 70-начале 80х годов? Ведь вся элементная база была уже тогда. Собственно, кроме двух высоковольтных транзисторов там задействованы самые простые детали, буквально копеечной стоимости, которые были и в 40-е годы. Ну ладно СССР, тут производство слабо реагировало на технический прогресс (например, ламповые телеки были сняты с производства только в конце 80-х годов), но на Западе?

Итак, по порядку…

Стандартная схема включения люминесцентной лампы была, как и практически всё в ХХ веке,  придумана американцами накануне Второй Мировой войны и включала в себя кроме лампы, уже упоминаемые нами дроссель и стартер. Да, еще параллельно сети вешали конденсатор для компенсации фазового сдвига вносимого дросселем или выражаясь еще более простым языком, для коррекции коэффициента мощности.

Дросселя и стартеры

 
 

Принцип работы всей системы довольно хитрый.  В момент замыкания кнопки включения по цепи сеть-кнопка-дроссель-первая спирать-стартер-вторая спираль-сеть начинает течь слабый ток – примерно 40-50 мА. Слабый потому, что в начальный момент сопротивление промежутка между контактами стартера достаточно велико. Однако этот слабый ток вызывает ионизацию газа между контактами и начинает резко возрастать. От этого электроды стартера разогреваются, а поскольку один из них биметаллический, то есть состоит из двух металлов с разной зависимостью изменений геометрических параметров от температуры (разным коэффициентом теплового расширения — КТР)  то при нагреве пластина из биметалла изгибается в сторону металла с меньшим КТР и замыкается с другим электродом.  Ток в цепи резко возрастает (до 500-600 мА), но всё же его скорость  роста и конечная величина  ограничены индуктивностью дросселя, собственно индуктивность – это и есть свойство препятствовать мгновенному индуктивность тока.  Поэтому дроссель в данной схеме официально называется  «аппарат пускорегулирующий».  Этот  большой ток разогревает спирали лампы которые начинают излучать электроны и подогревать газовую смесь внутри баллона. Сама лампа наполнена аргоном и парами ртути – это важное условие возникновения стабильного разряда. Само собой, что при замыкании контактов в стартере прекращается разряд в нем. Весь описанный процесс на самом деле занимает доли секунды.

 

Теперь начинается самое интересное. Остывшие контакты стартера размыкаются. Но в дросселе уже запасена энергия равная половина произведения его индуктивности на квадрат тока.  Она не может мгновенно исчезнуть (см. выше про индуктивность), а потому  вызывает появление в дросселе ЭДС самоиндукции (проще говоря – импульса напряжения примерно в 800-1000 вольт для 36-ваттной ламы в 120 см. длиной). Складываясь с амплитудным  сетевым напряжением (310 В), оно создает на электродах лампы напряжение достаточное для пробоя – то есть для возникновения разряда.  Разряд в лампе создает ультрафиолетовое свечение паров ртути, а оно в свою очередь воздействует на люминофор и заставляет его светиться в видимом спектре. При этом еще раз напомним, дроссель, имея индуктивное  сопротивление,  препятствует неограниченному возрастанию тока в лампе, что привело бы к ее разрушению или срабатыванию защитного автомата  в вашем жилище или другом месте где эксплуатируются подобные лампы.  Заметим, что лампа не всегда зажигается с первого раза, иногда нужно несколько попыток чтобы она вошла в устойчивый режим свечения, то есть те процессы которые мы описали, повторяются 4-5-6 раз.  Что, действительно, довольно неприятно. После того как лампа вошла в режим свечения ее сопротивление становится значительно меньшим чем сопротивление стартера поэтому его можно вытащить, лампа при этом будет продолжать светиться.  Ну и еще, если вы разберете стартер, то увидите что параллельно его выводам подключен конденсатор. Он нужен для ослабление радиопомех создаваемых контактом.

Итак, если совсем кратко и без углубления в теорию, скажем, что включается люминесцентная лампа большим напряжением, а удерживается в светящемся состоянии значительно меньшим (например включается при 900 вольтах, светится при 150). То есть любое устройство включения люминесцентной лампы – это устройство создающее большое напряжение включения на ее концах, а после зажигания лампы уменьшающее его до определенной рабочей величины.

Эта американская схема включения была фактически единственной и только лет 10 назад ее монополия стала стремительно рушиться – на рынок массово вошли Электронные пускорегулирующие аппараты (ЭПРА).  Они позволили не просто заменить тяжелые жужжащие дроссели, обеспечить мгновенное включение лампы, но и ввести массу других полезных вещей таких как:

— мягкий пуск ламы – предварительный прогрев спиралей что резко увеличивает срок эксплуатации лампы

—  преодоление мерцания (частота питания лампы значительно выше 50 Гц)

— Широкий диапазон входного напряжения 100…250 В;

— понижение энергопотребления (до 30%) при неизменном световом потоке;

— увеличение среднего срока службы ламп (на 50%);

— защиту от скачков напряжения;

— обеспечить отсутствие электромагнитных помех;

— отсутствие бросков коммутационных токов (важно, когда одновременно включается много ламп)

— автоматическое отключением дефектных ламп (это важно, устройства часто бояться работы на холостом ходу)

— КПД качественного ЭПРА — до 97%

— регулирование яркости ламп

Но! Все эти вкусняшки реализованы только в дорогих ЭПРАх.  И вообще, не  всё так безоблачно. Точнее – может быть всё и было бы безоблачно, если бы схемы ЭПРов сделать по-настоящему надежными. Ведь представляется очевидным, что электронный балласт (ЭПРА) должен быть во всяком случае не менее надежным чем дроссель, особенно если он стоит в 2-3 раза дороже. В «бывшей» схеме состоящей из дросселя, стартера и самой лампы как раз именно дроссель (пускорегулирующий элемент)  был самым надежным и, в общем, при качественной сборке мог работать практически вечно.  Советские дросселя 60-х годов работают до сих пор, они большие и намотаны довольно толстым проводом. Аналогичные по параметрам импортные дроссели даже таких известных фирм как «Philips» работают не столь надежно. Почему? Вызывает подозрение очень тонкий провод которым они намотаны. Ну и сам сердечник значительно меньше по объему чем у первых советских дросселей, оттого эти дросселя очень сильно нагреваются, что, наверное, тоже влияет на надежность.

Да, так вот,  как мне представляется, ЭПРА, во всяком случае дешевые – то есть стоимостью до 5-7 долларов за штуку (что выше чем у дросселя), сделаны заведомо ненадежными. Нет, они могут работать годами и может даже будут работать вечно, но тут как в лотерее – вероятность проигрыша куда выше чем выигрыша.  Дорогие ЭПРА сделаны условно-надежными.  Почему «условно» мы расскажем чуть позже. Начнем же свой маленький обзор с дешевых. Как по мне, так они составляют 95% покупаемых балластов. А может и почти 100%.

Рассмотрим несколько таких схем. Кстати, все «дешевые» схемы практически одинаковы по конструкции, хотя есть нюансы.

 

Дешевые электронные балласты (ЭПРА).  95% продаж.

Подобного типа балласты стоимостью в 3-5-7 долларов просто включают лампу. В этом состоит их единственная функция. Никаких других полезных наворотов не имеют.  Я срисовал пару схем чтобы объяснить как работает это новомодное чудо, хотя как мы говорили выше, принцип работы такой же как и в «классическом» дроссельном варианте — зажигаем большим напряжением, удерживаем малым. Вот только реализован он по-другому.

 

 Все схемы электронных балластов (ЭПРА) которые я держал в руках – и дешевые и дорогие —  представляли собой полумост – различались только варианты управления и «обвязка». Итак, переменное напряжение 220 вольт выпрямляестя диодным мостом VD4-VD7 и сглаживается конденсатором C1.  Во входных фильтрах дешевых электронных балластов, из-за экономии цены и места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Гц, притом, что расчет примерно таков: 1 ватт лампы – 1 мкФ емкости фильтра. В этой схеме 5,6 мкФ на 18 ватт, то есть явно меньше чем надо. Оттого (хотя и не только поэтому), кстати, лампа светится визуально тусклее чем от дорогого  балласта на ту же мощность.

Дальше через высоокоомный резистор R1 (1,6 МОм) начинает заряжаться конденсатор С4. Когда напряжение на нем превысит порог срабатывания двунаправленного динистора СD1 (примерно 30 вольт), он пробивается и на базе транзистора T2 появляется импульс напряжения. Открытие транзистора дает старт работе полумостового автогенератора образованного транзисторами Т1 и T2 и трансформатором TR1 c  управляющими обмотками включенными противофазно. Обычно эти обмотки содержат по 2 витка, а выходная обмотка 8-10 витков провода.

Диоды VD2-VD3 гасят отрицательные выбросы возникающие на обмотках управляющего трансформатора.

Итак, генератор запускается на частоте близкой к резонансной частоте последовательного контура образованного конденсаторами С2, С3 и дросселем С1. Эта частота может быть равна 45-50 кГц, во всяком случае более точно у меня ее измерить не получилось, не было под рукой запоминающего осцилографа. Обратим внимание, что емкость конденсатора С3 включенного между электродами лампы примерно в 8 раз меньше чем емкость конденсатора С2, следовательно, скачек напряжения на нем во столько же раз выше (так как в 8 раз больше емкостное сопротивление – чем выше частота, тем больше емкостное сопротивление на меньшей емкости). Вот почему напряжение такого конденсатора всегда выбирается не менее 1000 вольт. Одновременно по этой же цепи идет и ток, разогревающий электроды. Когда напряжение на конденсаторе С3 достигнет определенной величины, происходит пробой и лампа зажигается. После зажигания ее сопротивление становится значительно меньшим сопротивления конденсатора С3 и он на дальнейшую работу никакого влияния не оказывает. Частота генератора также понижается. Дроссель L1  как и в случае с «классическим» дросселем теперь выполняет функцию ограничения тока, но поскольку лампа работает на высокой частоте (25-30 кГц), то размеры его во много раз меньше.

Внешний вид балласта. Видно, что в плату не впаяны некоторые элементы. Например там, куда я после ремонта впаял токоограничительный резистор, стоит проволочная перемычка.

 

После терапии

 

Еще одно изделие. Неизвестного производителя. Здесь не пожертвовали 2 диода чтобы сделать «искусственный ноль».

 
 

«Севастопольская схема»

Есть такое мнение что дешевле чем сделают китайцы не сделает никто. Я тоже был в этом уверен. Уверен до тех пор, пока мне в руки не попали ЭПРА некоего «севастопольского завода» — во всяком случае человек который их продавал, сказал именно так.  Рассчитаны они были на лампу 58 W то есть 150 см длины. Нет, не скажу что они не работали или работали хуже чем китайские. Они работали. Лампы от них светились. Но…

Даже самые дешевые китайские балласты (ЭПРА) – это пластмассовый корпус, плата с  отверстиями, маска на плате со стороны печатного монтажа и обозначение —  где какая деталь со стороны монтажа. «Севастопольский вариант» был лишен всех этих избыточностей. Там плата была одновременно и крышкой корпуса, в плате  (по этой причине) не было никаких отверстий, не было никаких масок, никаких нанесенных обозначений, детали были размещены со стороны печатных проводников и всё что можно было  выполнено из SMD-элементов, чего я никогда не видел даже в самых дешевых китайских устройствах. Ну и сама схема! Я пересмотрел их великое множество, но никогда не видел ничего похожего. Нет, вроде всё как у китайцев: обычный полумост. Вот только назначение элементов D2-D7 и странное подключение базовой обмотки нижнего транзистора мне решительно непонятно. И еще! Создатели этого чудо-устройства совместили трансформатор полумостового генератора с дросселем! Просто намотали обмотки на Ш-образный сердечник.  До такого не додумался никто, даже китайцы. В общем, эту схему проектировали или гении или люди альтернативно-одаренные. С другой стороны, если они так гениальны, ну почему не пожертвовать пару центов для введения токоограничительного резистора предотвращающего бросок тока через конденсатор фильтра? Да и на варистор для плавного разогрева электродов (тоже центы) — могли бы разориться.

 

SMD-монтаж. Справа видел дроссель с базовыми обмотками.

 
 

Вид сзади. Плата, она же крышка. Никогда такого не видел.

 

В СССР

Приведенная выше «американская схема» (дроссель + стартер + люминесцентная лампа) работает от сети переменного тока частотой 50 герц. А если ток постоянный? Ну, например, лампу надо запитать от аккумуляторов. Тут уже электромеханическим вариантом не обойдешься. Нужно «лепить схему». Электронную. И такие схемы были, например в поездах. Мы все ездили в советских вагонах разной степени комфортности и видели там эти люминесцентные трубки. Но они питались постоянным током напряжением в 80 вольт, такое напряжение выдает вагонный аккумулятор. Для питания была разработана «та самая» схема – полумостовой  генератор с последовательной  резонансной цепью, а для предотвращения бросков тока через спирали ламп введен терморезистор прямого подогрева ТРП-27  с положительным температурным коэффициентом сопротивления.  Схема, надо сказать, отличалась исключительной надежностью, а чтобы переделать ее в балласт для сети переменного тока и использовать в быту, нужно было по сути добавить диодный мост, сглаживающий конденсатор и немного пересчитать параметры некоторых деталей и трансформатора. Единственное «но». Такая штуковина получилось бы довольно дорогой. Я думаю, ее стоимость была бы не меньше 60-70 советских рублей, при стоимости дросселя в 3 рубля. В основном, из-за высокой стоимости в СССР мощных высоковольтных транзисторов. И еще эта схема издавала довольно неприятный высокочастотный писк, не всегда, но иногда его можно было услышать, возможно, со временем менялись параметры элементов (подсыхали конденсаторы) и частота работы генератора понижалась.

Схема питания люминесцентных ламп в поездах в хорошем разрешении  http://www.budyon.org/wp-content/uploads/2013/12/poezd.jpg

 

Дорогие электронные балласты (ЭПРА)

В качестве примера простого «дорогого» балласта можно привести изделие фирмы TOUVE.   Он работал в системе освещения аквариума, проще говоря – от него питались две ламы зеленого свечения по 36 ватт. Хозяин балласта сказал мне, что эта штука какая-то особенная, специально разработанная для освещения аквариумов и террариумов. «Экологичная». В чем там экологичность я так и не понял, другое дело что этот «экологический балласт» не работал. Вскрытие и анализ схемы показал, что по сравнению с дешевыми она существенно усложнена, хотя принцип – полумост + запуск через тот самый динистор DB3 + последовательная резонансная цепь – сохранен в полном объеме. Поскольку лампы две, то мы видим два резонансных контура T4C22C2 и T3C23C5. Холодные спирали ламп от броска тока защищают терморезисторы PTS1, PTS2.

Правило!  Если вы покупаете экономную лампу или вот электронный балласт, проверьте как включается эта самая лампа. Если мгновенно – балласт дешевый, что бы вам там про него не рассказывали. В более менее нормальных, лампа должна включаться после нажатия кнопки примерно через 0,5 секунд.

Дальше.  Входной варистор RV защищает конденсаторы фильтра питания от броска тока.  Схема оснащена фильтром питания (обведен красным) – он препятствует попаданию высокочастотных помех в сеть. Корректор коэффициента мощности (Power Factor Correction) обведен зеленым контуром, но в данной схеме он собран на пассивных элементах, что отличает ее от самых дорогих и навороченных, где коррекцией управляет специальная микросхема. Об этой важной проблеме (коррекции коэффициента мощности) мы поговорим в одном из следующих статей. Ну и еще добавлен узел защиты в аномальных режимах – в этом случае прекращается генерация путем замыкания тиристором SCR базы Q1 на землю.

Скажем, дезактивация электродов или нарушение герметичности трубки, приводят к возникновению  «открытой схемы» (лампа не зажигается), что сопровождаются значительным ростом напряжения на пусковом конденсаторе и ростом тока балласта на частоте резонанса, ограниченными лишь добротностью контура.  Длительная работа в этом режиме ведет к повреждению балласта за счет перегрева транзисторов. Вот в этом случае и должна сработать защита — тиристор SCR замыкает базу Q1 на землю прекращая генерацию.

 

Схема ЭПРА. В большом разрешении смотреть здесь http://www.budyon.org/wp-content/uploads/2013/12/ball77.jpg

 

Вид внутри. Конечно все сделано куда солиднее, нежели в дешевых балластах. Кроме всего прочего, схема покрыта толстым слоем лака.

 

Видно, что данное устройство по размерам гораздо больше чем дешевые балласты, но после ремонта (вылетел один из транзисторов) и восстановления, выяснилось что эти самые транзисторы нагреваются, как мне показалось, сильнее чем надо, примерно до 70 градусов. Почему бы не поставить небольшие радиаторы? Я не утверждаю что транзистор вылетел из-за перегрева, но возможно работа на повышенных температурах (в закрытом корпусе) послужила провоцирующим фактором. В общем, поставил я небольшие радиаторы, благо место есть.

Продолжение следует….

www.budyon.org

Как работает люминесцентная лампа

Люминесцентная лампа (ртутная лампа низкого давления, далее по тексту – ЛЛ) является газоразрядным источником света. Конструктивно она представляет собой стеклянную трубку с нанесенным на внутреннюю поверхность слоем люминофора. В торцах трубки установлены спиральные электроды. Внутри лампы находятся разреженные пары ртути и инертный газ. Под действием электрического напряжения (поля), приложенного к электродам, в лампе возникает газовый разряд. При этом проходящий через пары ртути ток вызывает ультрафиолетовое излучение.

Принцип люминесцентной лампы.

Ультрафиолетовое излучение, воздействуя на люминофор, заставляет его светиться, т.е. люминофор преобразует ультрафиолетовое излучение газового разряда в видимый свет. Стекло, из которого выполнена ЛЛ, препятствует выходу ультрафиолетовогоизлучения из лампы, тем самым предохраняя наши глаза от вредного для них излучения.

Исключением являются бактерицидные лампы, при их изготовлении применяется увиолевое или кварцевое стекло, пропускающее ультрафиолет. Широкое распространение на сегодня получают ЛЛ с амальгамами In. Cd и других элементов. Более низкое давление паров ртути над амальгамой дает возможность расширить температурный диапазон оптимальных световых отдач до 60 0 C вместо 18-25 0 C для чистой ртути.

При повышении температуры окружающей среды сверх допустимой нормы (25 о C для чистой ртути и 60 о C для амальгам) возрастает температура стенок и давление паров ртути, а световой поток снижается.

Устройство компактной люминесцентной лампы.

Еще более заметное уменьшение светового потока наблюдается при понижении температуры, а значит, и давление паров ртути. При этом резко ухудшается и зажигание ламп, что делает затрудненным их использование при температурах ниже -10 о C. без утепляющих приспособлений. В связи с этим представляют интерес безртутные ЛЛ, с разрядом низкого давления в инертных газах.

В этом случае люминофор возбуждается излучением с длиной волны от 58.4 до 147 нм. Поскольку давление газа в безртутных ЛЛ практически не зависит от окружающей температуры, неизменными остаются и их световые характеристики. На сегодняшний день проблема работы ЛЛ при низких температурах решена использованием ЛЛ нового поколения, так называемых ламп Т5 (с диаметром трубки 16 мм), компактных люминесцентных ламп и применением для питания ЛЛ высокочастотных электронных пускорегулирующих аппаратов (ПРА).

Световая отдача ЛЛ повышается при увеличении размеров (длины) за счет снижения доли анодно-катодных потерь в общем световом потоке. Поэтому рациональнее использовать одну лампу на 36 Вт, чем две по18 Вт. Срок службы ЛЛ ограничен дезактивацией и распылением (истощением) катодов. Отрицательно сказываются на срок службы также колебания напряжения питающей сети и частые включения и выключения ламп. При использовании ЭПРА эти факторы сведены к минимуму. Широкое использование ЛЛ связано с тем, что они имеют ряд значительных преимуществ перед классическими лампами накаливания :

  1. Высокая эффективность: КПД — 20-25% (у ламп накаливания около 7% ) и светоотдача в 10 раз больше .
  2. Длительный срок службы – 15000-20000 ч. (у ламп накаливания — 1000 ч. сильно зависит от напряжения) питания.

Имеют ЛЛ и некоторые недостатки :

  1. Как правило, все разрядные лампы для нормальной работы требуют включения в сеть совместно с балластом. Балласт, он же пускорегулирующий аппарат (ПРА), — электротехническое устройство, обеспечивающее режимы зажигания и нормальной работы ЛЛ.
  2. Зависимость устойчивой работы и зажигания лампы от температуры окружающей среды (допустимый диапазон 55 о C, оптимальной считается 20 о C ). Хотя этот диапазон постоянно расширяется с появлением ламп нового поколения и использованием электронных балластов (ЭПРА).

Остановимся подробнее на достоинствах и недостатках ЛЛ. Известно, что оптическое излучение (ультрафиолетовое, видимое, инфракрасное ) оказывает на человека (его эндокринную, вегетативную, нервную системы и весь организм в целом ) значительное физиологическое и психологическое воздействие, в основном благотворное.

Схема энергосберегающей лампы.

Дневной свет — самый полезный. Он влияет на многие жизненные процессы, обмен веществ в организме, физическое развитие и здоровье. Но активная деятельность человека продолжается и тогда, когда солнце скрывается за горизонты. На смену дневному свету приходит искусственное освещение. Долгие годы для искусственного освещения жилья использовались ( и используются ) только лампы накаливания – теплый источник света, спектр которого отличается от дневного преобладанием желтого и красного излучения и полным отсутствием ультрафиолета.

Кроме того, лампы накаливания, как уже упоминалось, неэффективны, их коэффициет полезного действия — 6-8%, а срок службы очень мал – не более 1000 ч. Высокий технический уровень освещения с этими лампами невозможен.

Типичные люминесцентные лампы-трубки.

Вот почему вполне закономерным оказалось появление ЛЛ – разрядного источника света, имеющего 5-10 раз большую световую отдачу, чем лампы накаливания, и в 8-15 раз больший срок службы. Преодолев различные технические трудности, ученые и инженеры создали специальные ЛЛ для жилья – компактные, практически полностью копирующие привычный внешний вид и размеры ламп накаливания и сочетающие при этом ее достоинства (комфортную цветопередачу, простоту обслуживания) с экономичностью стандартных ЛЛ.

В силу своих физических особенностей ЛЛ имеют еще одно очень важное преимущество перед лампами накаливания: возможность создавать свет различного спектрального состава – теплый, естественный, белый, дневной, что может существенно обогатить цветовую палитру домашней обстановки. Не случайно существуют специальные рекомендации по выбору типа ЛЛ (цветности света) для различных областей применения. Наличие контролируемого ультрафиолета в специальных осветительно-облучательных ЛЛ позволяет решить проблему профилактики «светового голодания» для городских жителей, проводящих до 80% времени в закрытых помещениях.

Так, лампы, выпускаемые фирмой OSRAM ЛЛ типа BIOLUX, спектр излучения которых приближен к солнечному и насыщен строго дозированным ближним ультрафиолетом, успешно используются одновременно и для освещения, и для облучения жилых, административных, школьных помещений, особенно при недостаточности естественного света.

Схема включения люминесцентной лампы.

Выпускаются также специальные агарные ЛЛ типа CLEO (PHILIPS), предназначенные для принятия «солнечных» ванн в помещении и для других косметических целей. При использовании этих ламп следует помнить, что для обеспечения безопасности необходимо строго соблюдать инструкции изготовителя облучательного оборудования. А теперь остановимся на недостатках люминесцентного освещения, к которым многие причисляют его пресловутую «вредность для здоровья».

Природа газового разряда такова, что, как уже было сказано выше, любые ЛЛ имеют в спектре небольшую долю ближнего ультрафиолета. Известно, что при передозировке даже естественного солнечного света могут возникнуть неприятные явления, в часности избыточное ультрафиолетовое облучение может привести к заболеваниям кожи, повреждению глаз. Однако, сравнив воздействие на человека в течение жизни естественного солнечного и искусственного люминесцентного излучения, становится понятно, насколько необоснованно предположение о вреде излучения ЛЛ.

Было доказано, что работа в течение года (240 рабочих дней) при искусственном освещении ЛЛ холодно-белого света с очень высоким уровнем освещенности в 1000 лк (это в 5 раз превышает оптимальный уровень освещенности в жилье) соответствует пребыванию на открытом воздухе в г. Давос (Швейцария) в течении 12 дней по 1 часу в день (в полдень). Следует заметить, что реальные условия в жилых помещениях бывают в десятки раз более щадящими, чем в приведенном примере.

Следовательно, о вреде обычного люминесцентного освещения говорить не приходится. К аналогичным выводам пришли медики, гигиенисты и светотехники, принявшие участие в проводившейся в Мюнхене развернутой научной дискуссии на тему «Влияние освещения ЛЛ на здоровье человека». Все участники дискуссии были единодушны: строгое соблюдение правил грамотного устройства освещения, которые включают ограничение прямой и отраженной блескости, ограничение пульсации светового потока, обеспечение благоприятного распределения яркости и правильной светопередачи, полностью устранит существующие жалобы на люминесцентное освещение.

Изменение тока люминесцентной лампы от напряжения сети.

В приведенном выше перечне важное место занимает вопрос ограничения пульсации светового потока. Дело в том, что традиционные линейные трубчатые ЛЛ, подключенные к сети с помощью электромагнитного пускорегулирующего аппарата (чаще всего применяемого в светильниках), создают свет непостоянный во времени, а «микропульсирующий», т .е. при имеющейся в сети частоте переменного тока 50 Гц пульсация светового потока лампы происходит 100 раз в секунду.

И хотя эта частота выше критической для глаза и, следовательно, мелькающие яркости освещаемых объектов глазом не улавливаются, пульсация освещения при длительном воздействии может отрицательно влиять на человека, вызывая повышенную утомляемость, снижение работоспособности, особенно при выполнении напряженных зрительных работ: чтение, работе за компьютером, рукоделии и т. д.

Вот почему появившиеся достаточно давно светильники с электромагнитным низкочастотным ПРА рекомендуется использовать в так называемых «нерабочих» зонах (подсобных помещениях, повалах, гаражах и т. д.). В светильниках с электронным высокочастотным ПРА указанная особенность работы ЛЛ полностью устранена, но даже такие светильники с линейными ЛЛ достаточно громоздки и для местного (рабочего) освещения не всегда удобны. Поэтому для традиционного освещения жилья люстрами, настенными, напольными, настольными светильниками целесообразно применять упомянутые выше компактные люминесцентные лампы.

Маркировка и параметры отечественных люминесцентных ламп.

И, наконец, последнее небольшое замечание, связанное с эксплуатацией светильников с ЛЛ. В лампу для ее работы вводится капля ртути – 30-40 мг. а компактных 2-3 мг, Если вас это пугает, вспомните, что в термометре, имеющемся в каждой семье, содержится 2 г этого жидкого металла. Разумеется, если лампа разобьется, поступить следует так же, как мы поступаем, когда разбиваем термометр, – тщательно собрать и удалить ртуть. ЛЛ в жилье – это не только более экономичный, чем лампа накаливания, источник света.

Грамотное освещение ЛЛ имеет множество преимуществ перед традиционным: экономичность, обилие и красочность света, равномерность распределения светового потока, особенно в случаях высвечивания протяженных объектов линейными лампами, меньшая яркость ламп и значительно меньшее выделение тепла.

На сегодняшний день наиболее качественную продукцию и широкий ассортимент на нашем рынке представляют мировые светотехнические брэнды:

  1. Германская фирма OSRAM.
  2. Голландская PHILIPS и ряд других, которые предлагают широчайший выбор высококачественных ЛЛ на любой вкус и цвет.

Устройство и схема включения люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).

Устройство и описание ЛЛ

Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.

Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого — создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер — лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины. В исходном состоянии электроды разомкнуты.

Принцип работы ЛЛ

Стартерная схема включения люминесцентных ламп работает следующим образом.

  1. На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
  2. При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
  3. Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
  4. Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.

Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.

Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.

Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.

Бездроссельное включение люминесцентных ламп: схемы

Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).

Как запускается ЛЛ с ЭПРА

Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.

Достоинства электронной схемы запуска:

  • возможность пуска с любой временной задержкой;
  • не нужны массивный электромагнитный дроссель и стартер;
  • отсутствие гудения и моргания ламп;
  • высокая светоотдача;
  • легкость и компактность устройства;
  • больший срок эксплуатации.

Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.

Система ЭПРА преобразует сетевое переменное напряжение 220 В в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампы может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.

Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.

Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR1 и транзисторах Т1 и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2. С3. L1. подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.

ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.

Преимущества современных ЭПРА следующие:

  • плавное включение;
  • экономичность работы;
  • сохранение электродов;
  • исключение мерцания;
  • работоспособность при низкой температуре;
  • компактность;
  • долговечность.

Недостатками являются более высокая стоимость и сложная схема зажигания.

Применение умножителей напряжения

Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.

После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1. С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3. С4 устанавливают слюдяные на 1000 В.

ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.

Бесстартерная схема включения люминесцентных ламп

Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.

Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.

Как включить сгоревшую лампу?

Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.

Заключение

Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Принцип работы люминесцентной лампы. Устройство светильника

Представим, что кто-то из нас работает по вызовам и в своей практике мы сталкиваемся с различными просьбами граждан:

  • установили и подключили люминесцентный светильник, — светильник не работает;
  • заменили люминесцентные лампы в светильнике, — светильник не работает;
  • заменили стартер с дросселем в светильнике, — светильник опять не работает

и так далее. На выполняемую работу можно потратить целый день и не найти причину неисправности, а можно потратить около тридцати минут, установить причину неисправности и устранить ее. То-есть, здесь все зависит от нашего опыта работы и элементарных знаний по электротехнике .

Полагаю, что работа электрика должна заключаться не только в следующем:

  • как правильно соединить провода в распределительной коробке;
  • как починить электрический патрон в люстре;
  • как установить и подключить выключатель к люстре;
  • как подключить трехфазный двигатель к распределительной панели ВРУ

и далее. По этой специализации должны охватываться более обширные знания, в этой теме я хочу поделиться с Вами небольшой такой информацией.

Как загорается люминесцентная лампа

В начале ознакомимся со схематическим изображением устройства светильника с одной лампой рис.1, состоящего из:

  • люминесцентной лампы, представляющей собой цилиндрическую стеклянную трубку 1;
  • электродов, с закрепленной на них вольфрамовой спиралью 2;
  • неоновой лампочки стартера с двумя электродами 3, 4;
  • стартера Ст;
  • дросселя Д;
  • конденсатора С.

В начальный момент, при включении люминесцентного светильника, для лампы не хватает напряжения чтобы создать разряд в самой люминесцентной лампе. Как-же создать электрический разряд в люминесцентной лампе? — Для этого необходимо ознакомиться:

с устройством люминесцентной лампы;

с принципом работы стартера люминесцентной лампы

и понять, — для чего нужен дроссель в люминесцентной лампе.

Устройство люминесцентной лампы

На двух торцах люминесцентной лампы рис.2 расположены вваренные стеклянные ножки, на каждой ножке смонтированы электроды 5, электроды выведены к цоколю 2 и соединены с контактными штырьками, на самих электродах по обеим торцам лампы закреплена вольфрамовая спираль.

На внутреннюю поверхность лампы нанесен тонкий слой люминофора 4, колба лампы 1 после откачки воздуха заполняется аргоном с небольшим количеством ртути 3.

Для чего нужен дроссель в люминесцентной лампе

Дроссель в схеме люминесцентного светильника служит для броска напряжения. Рассмотрим отдельную электрическую схему рис.3, которая не относится к схеме люминесцентного светильника.

Для данной схемы, при размыкании ключа, лампочка на короткое мгновение загорится ярче и затем погаснет. Явление это связано с возникновением ЭДС самоиндукции катушки правило Ленца. Чтобы увеличить свойства проявления самоиндукции, катушку наматывают на сердечник — для увеличения электромагнитного потока.

Схематическое изображение рисунка 4 дает нам полное представление об устройстве дросселя для отдельных типов светильников с люминесцентными лампами.

Магнитопровод сердечник дросселя собирается из пластин электротехнической стали, две обмотки в дросселе — между собой соединены последовательно.

Принцип работы стартера люминесцентной лампы

Стартер в электрической схеме выполняет работу быстродействующего ключа, то-есть им создается замыкание и размыкание электрической цепи.

стартеры для люминесцентного свтильника

При включении стартера замыкании ключа происходит разогрев катодов, а при размыкании цепи создается импульс напряжения, необходимый для зажигания лампы. Стартер в разобранном виде представляет из себя так называемую лампу тлеющего разряда с биметаллическими электродами.

Принцип работы люминесцентного светильника

По двум предоставленным схемам люминесцентных светильников рис.5 можно понять, — в каком соединении состоят каждые отдельные элементы.

Все элементы двух светильников состоят в последовательном соединении, — кроме конденсаторов. Когда мы включаем люминесцентный светильник, происходит прогревание биметаллической пластинки стартера. Пластинка при прогревании изгибается и стартер замыкается, тлеющий разряд при замыкании пластинок гаснет и пластинки начинают остывать, при остывании — пластинки размыкаются. Когда пластинки размыкаются в парах ртути происходит дуговой разряд и лампа зажигается.

В настоящее время имеются более усовершенствованные люминесцентные светильники — с электронным балластом, принцип работы которых тот-же самый что и у люминесцентных светильников, которые были рассмотрены в этой теме.

Предоставленные для Вас записи вносятся мною в сайт из личных конспектов, почерк в которых очень плохой, часть информации берется из собственных знаний. Фотоснимки и электрические схемы подбираются для темы — из интернета. Чтобы предоставить свои записи с личными фотоснимками при выполнении каких-либо работ, нужно наверное иметь личного фотографа или непосредственно обращаться с просьбой к кому-либо, а обращаться с такой просьбой просто не хочется.

На этом пока все друзья. Следите за рубрикой.

04.03.2015 в 16:41

Всегда помогу Борис полезной информацией по части электротехники как Вам так и Вашим друзьям, и знакомым. Виктор.

26.02.2015 в 08:58

Здравствуйте, Виктор! Спасибо за эл.ликбез,помогает! У меня такой случай: погас сначала один потолочный светильник встроенный в систему Армстронг, потом другой. Обратился за помощью к специалисту и получил ответ: светильники надо выбросить и заменить на новые целиком, т.к. сейчас идут светильники без стартеров и т. д. Я заменил светильники и задумался, что этот путь очень дорогой, новый светильник стоит 1400рублей. Если можно, скажите пожалуйста как проверить начинку светильника? дроссели, стартеры, конденсатор. Светильник 4-х ламповый, с 4-мя стартерами, двумя дросселями, одним конденсатором, другими словами как найти неисправный прибор? Прибор-тестор у меня есть. И ещё, в каком магазине можно купить в Тюмени составные части начинки? Заранее благодарю Вас. Спасибо. Борис. 26.02.15.

04.03.2015 в 16:35

Здравствуйте Борис. По люминесцентным светильникам я составлю дополнительную отдельную тему и отвечу на интересующие Ваши вопросы. Следите за рубрикой Борис, я просто стал редко заходить на свой сайт и Ваше письмо прочитал 4 марта, постараюсь ответить на вопросы в полном объеме.

17.03.2015 в 12:57

Источники: http://fazaa.ru/osveshhenie/ustrojstvo-i-princip-raboty-lyuminescentnoj-lampy.html, http://fb.ru/article/233664/ustroystvo-i-shema-vklyucheniya-lyuminestsentnoy-lampyi, http://zapiski-elektrika.ru/osvehenie/princip-raboty-lyuminescentnoj-lampy-ustrojstvo-svetilnika.html

electricremont.ru


Смотрите также